(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond(true, x, y) → cond(gr(x, y), p(x), s(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), s(z1)), GR(z0, z1), P(z0))
GR(s(z0), s(z1)) → c3(GR(z0, z1))
S tuples:
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), s(z1)), GR(z0, z1), P(z0))
GR(s(z0), s(z1)) → c3(GR(z0, z1))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c3
(3) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), s(z1)), GR(z0, z1))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), s(z1)), GR(z0, z1))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
z0,
z1) →
c(
COND(
gr(
z0,
z1),
p(
z0),
s(
z1)),
GR(
z0,
z1)) by
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, 0, z0) → c(COND(false, p(0), s(z0)), GR(0, z0))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, 0, z0) → c(COND(false, p(0), s(z0)), GR(0, z0))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, 0, z0) → c(COND(false, p(0), s(z0)), GR(0, z0))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c
(7) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 6 dangling nodes:
COND(true, 0, z0) → c(COND(false, p(0), s(z0)), GR(0, z0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c
(9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), 0) → c1(GR(s(z0), 0))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), 0) → c1(GR(s(z0), 0))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c1
(11) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c1
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c1
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c1, c, c1
(13) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), 0) → c1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c1
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), 0) → c1
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c1, c, c1
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
We considered the (Usable) Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(COND(x1, x2, x3)) = [2]x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1) = 0
POL(c1(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [3]
POL(gr(x1, x2)) = [3] + [2]x1
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = [2]
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c1
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), 0) → c1
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c1, c, c1
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
x1) →
c(
COND(
gr(
s(
z0),
x1),
z0,
s(
x1)),
GR(
s(
z0),
x1)) by
COND(true, s(z0), 0) → c(COND(true, z0, s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c1
COND(true, s(z0), 0) → c(COND(true, z0, s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), 0) → c1
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c1, c, c1
(19) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 2 of 7 dangling nodes:
COND(true, s(z0), 0) → c1
COND(true, s(z0), 0) → c(COND(true, z0, s(0)), GR(s(z0), 0))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c1, c
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
s(
z1)) →
c(
COND(
gr(
z0,
z1),
p(
s(
z0)),
s(
s(
z1))),
GR(
s(
z0),
s(
z1))) by
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(s(z0))), GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(s(z0))), GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(s(z0))), GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c1, c, c
(23) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(COND(false, p(s(0)), s(s(z0))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(COND(false, p(s(0)), s(s(z0))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c1, c, c, c2
(25) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c1, c, c, c2, c2
(27) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(0), s(z0)) → c2
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c1, c, c, c2, c2
(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(0), s(z0)) → c2
We considered the (Usable) Rules:
p(s(z0)) → z0
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(COND(x1, x2, x3)) = [2]
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2) = 0
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [3]
POL(gr(x1, x2)) = [2] + [3]x2
POL(p(x1)) = [3]
POL(s(x1)) = [2]
POL(true) = [5]
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(0), s(z0)) → c2
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c1, c, c, c2, c2
(31) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
We considered the (Usable) Rules:
p(s(z0)) → z0
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(COND(x1, x2, x3)) = [5] + x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2) = 0
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [4]
POL(gr(x1, x2)) = [2]x1
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(0), s(z0)) → c2
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c1, c, c, c2, c2
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
0) →
c1(
COND(
true,
p(
s(
z0)),
s(
0))) by
COND(true, s(z0), 0) → c1(COND(true, z0, s(0)))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2
COND(true, s(z0), 0) → c1(COND(true, z0, s(0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), 0) → c1(COND(true, p(s(z0)), s(0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(0), s(z0)) → c2
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c, c2, c2, c1
(35) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 3 of 10 dangling nodes:
COND(true, s(0), s(z0)) → c2
COND(true, s(z0), 0) → c1(COND(true, z0, s(0)))
COND(true, s(s(z0)), s(0)) → c2(GR(s(s(z0)), s(0)))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c, c2
(37) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
0,
x1) →
c(
COND(
gr(
0,
x1),
0,
s(
x1))) by
COND(true, 0, z0) → c(COND(false, 0, s(z0)))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, 0, z0) → c(COND(false, 0, s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, 0, z0) → c(COND(false, 0, s(z0)))
K tuples:
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c2, c
(39) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 7 dangling nodes:
COND(true, 0, z0) → c(COND(false, 0, s(z0)))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c2
(41) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
GR(
s(
z0),
s(
z1)) →
c3(
GR(
z0,
z1)) by
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
S tuples:
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
K tuples:
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c2, c3
(43) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 6 dangling nodes:
COND(true, s(0), s(z0)) → c2(GR(s(0), s(z0)))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
S tuples:
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
K tuples:
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c2, c3
(45) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1)))) by COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
S tuples:
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c2, c3
(47) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
We considered the (Usable) Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(s(z0)) → z0
And the Tuples:
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2, x3)) = x2
POL(GR(x1, x2)) = [1]
POL(c(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [3]
POL(gr(x1, x2)) = [3] + [2]x1 + [3]x2
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = [3]
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
S tuples:
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
K tuples:
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c2, c3
(49) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
We considered the (Usable) Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(s(z0)) → z0
And the Tuples:
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2, x3)) = x22
POL(GR(x1, x2)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
S tuples:none
K tuples:
COND(true, s(s(z0)), s(0)) → c2(COND(true, p(s(s(z0))), s(s(0))))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c2, c3
(51) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(52) BOUNDS(O(1), O(1))